Facial Expression Recognition by ICA with Selective Prior
نویسندگان
چکیده
Permutation ambiguity of the classical ICA may cause problems in feature extraction for pattern classification. To solve that, we include a selective prior for de-mixing coefficients into the classical ICA. Since the prior is constructed upon the classification information from the training data, we refer to the proposed ICA model with a selective prior as a supervised ICA. We formulate the learning rule for the supervised ICA by taking a form of the natural gradient approach, and then investigate the performance of the supervised ICA in facial expression recognition from the aspects of both the correct rate of recognition and the robustness to the number of independent components.
منابع مشابه
Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation
Permutation ambiguity of the classical Independent Component Analysis (ICA) may cause problems in feature extraction for pattern classification. Especially when only a small subset of components is derived from data, these components may not be most distinctive for classification, because ICA is an unsupervised method. We include a selective prior for de-mixing coefficients into the classical I...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملFacial Expression Recognition based on Independent Component Analysis
As an important part of artificial intelligence and pattern recognition, facial expression recognition has drawn much attention recently and numerous methods have been proposed. Feature extraction is the most important part which directly affects the final recognition results. Independent component analysis (ICA) is a subspace analysis method, which is also a novel statistical technique in sign...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006